

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 237-240 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0211237240 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 237

Query Optimization using B+ Trees

Paras Goyal, K C Tripathi, M L Sharma
Department of Information Technology, Maharaja Agrasen Institute of Technology, Delhi- India

Date of Submission: 05-12-2020 Date of Acceptance: 20-12-2020

--

ABSTRACT: This is a research-based project and

the basic point motivating this project is learning

and implementing Data Structures and Algorithms

[1] that reduces time and space complexity [2]. In

this project, we reduce the time taken to search a

given record by using a B/B+ tree [3] rather than

indexing and traditional sequential access. It is

concluded that disk-access times are much slower

than main memory access times. Typical seek

times and rotational delays are of the order of 5 to 6

milliseconds and typical data transfer rates are of

the range of 5 to 10 million bytes per second and

therefore, main memory access times are likely to

be at least 4 or 5 orders of magnitude faster than

disk access on any given system. Therefore, the

objective is to minimize the number of disk

accesses and thus, this project is concerned with

techniques for achieving that objective i.e.

techniques for arranging the data on a disk so that

any required piece of data, say some specific

record, can be located in as few I/O’s as possible.

KEYWORDS: B+ Trees - DBMS - Search

Optimizations - File Systems

I. INTRODUCTION
B/B+ trees are extensively used in

Database Management Systems [4] because search

operation is much faster in them compared to

indexing and traditional sequential access.

Moreover, in DBMS, B+ tree is used more as

compared to B-Tree. This is primarily because

unlike B-trees, B+ trees have a very high fan out,

which reduces the number of I/O operations

required to find an element in the tree. This makes

the insertion, deletion, and search using B+ trees

very efficient [5]. However, the indexing of

columns to be searched is also efficient but the

downside of it is that when searching is to be done

on large collections of data records, it becomes

quite expensive, because each entry in B/B+ tree

requires us to start from the root and go down to

the appropriate leaf page. This operation takes only

O(log n) time. Hence we would also like to

implement the efficient alternative, B+ tree.

B-Tree is a self-balancing search tree [6].

In most of the other self-balancing search trees, it is

assumed that everything is in main memory. To

understand the use of B-Trees, we must think of the

huge amount of data that cannot fit in main

memory. When the number of keys is high, the data

is read from disk in the form of blocks. Disk access

time is very high compared to the main memory

access time. The main idea of using B-Trees is to

reduce the number of disk accesses. Most of the

tree operations (search, insert, delete, max, min,

etc.) require O (h) disk accesses where h is the

height of the tree. B-tree is a fat tree. Height of B-

Trees is kept low by putting maximum possible

keys in a B-Tree node. Generally, the B-Tree node

size is kept equal to the disk block size. Since it is

low for B-Tree, total disk accesses for most of the

operations are reduced significantly compared to

balanced Binary Search Trees like AVL Tree [7],

Red-Black Tree [8], etc.

II. RELATED WORK
The binary search tree is a well-known

data structure. When the data volume is so large

that the tree does not fit in main memory, a disk-

based search tree is necessary. The most commonly

used disk-based search trees are the B-tree and its

variations. Originally invented by Bayer and

McCreight [9], the B-tree may be regarded as an

extension of the balanced binary tree, since a B-tree

is always balanced (i.e., all leaf nodes are on the

same level). It is the goal of all algorithms to

consume as less time as possible in the computer

and manage a tradeoff of time and space. B+ trees

are used in a number of ways to manage this

tradeoff by utilizing required space [10]. Efficient

construction of indexes is very important in bulk-

loading a database or adding a new index to an

existing database since both of them should handle

an enormous volume of data. Proposed algorithm

for batch-constructing the B+-tree, the most widely

used index structure in database systems. B+ Tree,

a widely-used storage structure in database

management systems, and propose its utilization

for supporting the logging in databases [12].

Developing B+ trees with good performance on

NVM, using Optane DCs, to study and analyze the

influence factors of designing B+ trees on NVM.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 237-240 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0211237240 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 238

III. METHODOLOGY
3.1 B+ Tree

Most file systems employ search-trees to

index the stored data, and the B+ tree is a special

search-tree with the following features: – It stores

records: r = (k, d); k = key, d = data. The key is

unique. – Data is stored only in leaves, inner-nodes

are only index-nodes. – In an index-node there are

x keys, and also x + 1 pointers, each pointing to the

corresponding subtree. – The B+ tree has one main

parameter, namely its order. If the order of a B+ is

d, then for each index node there is a minimum of d

keys, and a maximum of 2d keys, so there are a

minimum of d + 1 pointers, and maximum of 2d +

1 pointers in the node. From the above, if a B+ tree

stores n nodes, its height must not be greater than

logd (n) + 1. The total cost of insertion and deletion

is O (logd (n)) [13]. This data structure is used by

some database systems like PostgreSQL and

MySQL, and file systems like ReiserFS, XFS, JF2

and NTFS.

The leaves (the bottom-most index blocks)

of the B+ tree are often linked to one another in a

linked list; this makes range queries or an (ordered)

iteration through the blocks simpler and more

efficient (though the aforementioned upper bound

can be achieved even without this addition). This

does not substantially increase space consumption

or maintenance on the tree. This illustrates one of

the significant advantages of a B+ tree over a B-

tree; in a B-tree, since not all keys are present in the

leaves, such an ordered linked list cannot be

constructed. A B+ tree is thus particularly useful as

a database system index, where the data typically

resides on disk, as it allows the B+ tree to actually

provide an efficient structure for housing the data

itself.

If a storage system has a block size of B

bytes, and the keys to be stored have a size of k,

arguably the most efficient B+ tree is one where.

Although theoretically, the one-off is unnecessary,

in practice there is often a little extra space taken

up by the index blocks (for example, the linked list

references in the leaf blocks). Having an index

block which is slightly larger than the storage

system's actual block represents a significant

performance decrease; therefore erring on the side

of caution is preferable. If nodes of the B+ tree are

organized as arrays of elements, then it may take a

considerable time to insert or delete an element as

half of the array will need to be shifted on average.

To overcome this problem, elements inside a node

can be organized in a binary tree or a B+ tree

instead of an array. B+ trees can also be used for

data stored in RAM. In this case, a reasonable

choice for block size would be the size of the

processor's cache line.

3.2 Implementation Blocks

3.2.1 Insertion

1) Initialize x as root.

2) While x is not a leaf, do the following

a) Find the child of x that is going to be traversed

next. Let the child be y.

b) If y is not full, change x to point toy.

c) If y is full, split it and change x to point to one of

the two parts of y. If k is smaller than mid key in y,

then set x as the first part of y. The else second part

of y. When we split y, we move a key from y to its

parent x.

3) The loop in step 2 stops when x is a leaf. x must

have space for 1 extra key as we have been splitting

all nodes in advance. So simply insert k to x.

3.2.2 Searching

1) Initialize x as root.

2) While x is not a leaf, do the following:

a.) find the key value which equal to value to

search, if found return the index.

b.) otherwise go to the node which may contain

value to be searched i.e. if the value to be searched

is valid, then go to the node which has key values

x< val <y.

c.) Recursively call the node.

3) The recursion in step 2 stops when x is leaf and

we have not found value to be searched. In that

case, we return the key not found.

3.2.3 Code Structure

· 2 classes are made for the BTree

implementation: One is the client which is

used to run all the functions of class BTree.

· 4 data members are taken for class BTree

which are M(for the degree of the BTree), a

private class Node which stores array of Entry

references which is another private class in

BTree , n for the number of key-value

pairs(key-value pair is counted as one data

value), height for the height of BTree.

· Private class Entry has 3 data members: key,

value, and reference of type Node.

· BTree constructor is used to initialize an empty

BTree.

IV. RESULT AND ANALYSIS
We reduced the time taken to search a

given record by using a B/B+ tree rather than

indexing and traditional sequential access. It is

concluded that disk-access times are much slower

than main memory access times. Typical seek

times and rotational delays are of the order of 5 to 6

milliseconds and typical data transfer rates are of

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 237-240 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0211237240 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 239

the range of 5 to 10 million bytes per second and

therefore, main memory access times are likely to

be at least 4 or 5 orders of magnitude faster than

disk access on any given system. If a storage

system has a block size of B bytes, and the keys to

be stored have a size of k, arguably the most

efficient B+ tree is one where. Although

theoretically, the one-off is unnecessary, in practice

there is often a little extra space taken up by the

index blocks (for example, the linked list

references in the leaf blocks). Having an index

block which is slightly larger than the storage

system's actual block represents a significant

performance decrease; therefore erring on the side

of caution is preferable. If nodes of the B+ tree are

organized as arrays of elements, then it may take a

considerable time to insert or delete an element as

half of the array will need to be shifted on average.

To overcome this problem, elements inside a node

can be organized in a binary tree or a B+ tree

instead of an array. B+ trees can also be used for

data stored in RAM. In this case, a reasonable

choice for block size would be the size of the

processor's cache line. The space efficiency of B+

trees can be improved by using some compression

techniques. One possibility is to use delta encoding

to compress keys stored into each block. For

internal blocks, space saving can be achieved by

either compressing keys or pointers.

V. CONCLUSION
It is concluded that disk-access times are

much slower than main memory access times.

Typical seek times and rotational delays [14] are of

the order of 5 to 6 milliseconds and typical data

transfer rates are of the range of 5 to 10 million

bytes per second and therefore, main memory

access times are likely to be at least 4 or 5 orders of

magnitude faster than disk access on any given

system. Therefore, the objective is to minimize the

number of disk accesses and thus, this project is

concerned with techniques for achieving that

objective i.e. techniques for arranging the data on a

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 237-240 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0211237240 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 240

disk so that any required piece of data, say some

specific record, can be located in a few I/O’s as

possible.

1. From the above observations, it is very clear that

B+ tree is better than normal indexing in every

possible way.

2. Hence it is always desirable to implement B+

tree data structure to search data in an efficient

manner.

3. Multilevel Indexing and is better for larger data

whereas sparse indexing does well with smaller

data.

REFERENCES
[1]. Data Structures using C, Aaron M.

Tenembaum, Yedidyah Langsam, Moshe J.

Augenstein

[2]. https://medium.com/@info.gildacademy/tim

e-and-space-complexity-of-data-

structureand-sorting-algorithms-

588a57edf495

[3]. https://en.wikipedia.org/wiki/B%2B_tree

[4]. Database System Concepts taught in class

and text reference textbook by Abraham

Silberschatz, Henry F. Korth, and S.

Sudarshan

[5]. https://www.javatpoint.com/b-plus-tree

[6]. https://en.wikipedia.org/wiki/Self-

balancing_binary_search_tree

[7]. https://en.wikipedia.org/wiki/AVL_tree

[8]. https://en.wikipedia.org/wiki/Red%E2%80%

93black_tree

[9]. Bayer R. and McCreight E.M. Organization

and maintenance of large ordered indices.

Acta Inf., 1, 1972.

[10]. On batch-constructing B+-trees: algorithm

and its performance evaluation Sang-

WookKim Division of Computer,

Information, and Communications

Engineering, Kangwon National University,

192-1 Hyoja 2 Dong, Chunchon, Kangwon

Do 200-701, Republic of Korea

[11]. Jiangkun Hu1 · Youmin Chen1 ·

Youyou Lu1 · Xubin He2 · Jiwu Shu1:

Understanding and analysis of B+ trees

on NVM towards consistency

and efficiency.

[12]. Kieseberg, Peter & Schrittwieser, Sebastian

& Morgan, Lorcan & Mulazzani, Martin &

Huber, Markus & Weippl, Edgar. (2011).

Using the structure of B + ‐trees for

enhancing logging mechanisms of databases.

International Journal of Web Information

Systems. 9. 301-304.

10.1145/2095536.2095588.

[13]. Zhang D., Baclawski K.P., J. Tsotras V.

(2009) B+-Tree. In: LIU L., ÖZSU M.T.

(eds) Encyclopedia of Database Systems.

Springer, Boston, MA.

https://doi.org/10.1007/978-0-387-39940-

9_739

[14]. Kumar, M.R. & Rajendra, B.. (2015). An

Improved Approach to Maximize the

Performance of Disk Scheduling Algorithm

by Minimizing the Head Movement and

Seek Time Using Sort Mid Current

Comparison (SMCC) Algorithm. Procedia

Computer Science. 57. 222-231.

10.1016/j.procs.2015.07.468

https://medium.com/@info.gildacademy/time-and-space-complexity-of-data-structureand-sorting-algorithms-588a57edf495
https://medium.com/@info.gildacademy/time-and-space-complexity-of-data-structureand-sorting-algorithms-588a57edf495
https://medium.com/@info.gildacademy/time-and-space-complexity-of-data-structureand-sorting-algorithms-588a57edf495
https://medium.com/@info.gildacademy/time-and-space-complexity-of-data-structureand-sorting-algorithms-588a57edf495
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://www.sciencedirect.com/science/article/pii/S0020025502002025#!
https://www.sciencedirect.com/science/article/pii/S0020025502002025#!
https://doi.org/10.1007/978-0-387-39940-9_739
https://doi.org/10.1007/978-0-387-39940-9_739

