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ABSTRACT: This is a research-based project and 

the basic point motivating this project is learning 

and implementing Data Structures and Algorithms 

[1] that reduces time and space complexity [2]. In 

this project, we reduce the time taken to search a 

given record by using a B/B+ tree [3] rather than 

indexing and traditional sequential access. It is 

concluded that disk-access times are much slower 

than main memory access times. Typical seek 

times and rotational delays are of the order of 5 to 6 

milliseconds and typical data transfer rates are of 

the range of 5 to 10 million bytes per second and 

therefore, main memory access times are likely to 

be at least 4 or 5 orders of magnitude faster than 

disk access on any given system. Therefore, the 

objective is to minimize the number of disk 

accesses and thus, this project is concerned with 

techniques for achieving that objective i.e. 

techniques for arranging the data on a disk so that 

any required piece of data, say some specific 

record, can be located in as few I/O’s as possible. 

KEYWORDS: B+ Trees - DBMS - Search 

Optimizations - File Systems 

 

I. INTRODUCTION 
B/B+ trees are extensively used in 

Database Management Systems [4] because search 

operation is much faster in them compared to 

indexing and traditional sequential access. 

Moreover, in DBMS, B+ tree is used more as 

compared to B-Tree. This is primarily because 

unlike B-trees, B+ trees have a very high fan out, 

which reduces the number of I/O operations 

required to find an element in the tree. This makes 

the insertion, deletion, and search using B+ trees 

very efficient [5]. However, the indexing of 

columns to be searched is also efficient but the 

downside of it is that when searching is to be done 

on large collections of data records, it becomes 

quite expensive, because each entry in B/B+ tree 

requires us to start from the root and go down to 

the appropriate leaf page. This operation takes only 

O(log n) time.  Hence we would also like to 

implement the efficient alternative, B+ tree. 

B-Tree is a self-balancing search tree [6]. 

In most of the other self-balancing search trees, it is 

assumed that everything is in main memory. To 

understand the use of B-Trees, we must think of the 

huge amount of data that cannot fit in main 

memory. When the number of keys is high, the data 

is read from disk in the form of blocks. Disk access 

time is very high compared to the main memory 

access time. The main idea of using B-Trees is to 

reduce the number of disk accesses. Most of the 

tree operations (search, insert, delete, max, min, 

etc.) require O (h) disk accesses where h is the 

height of the tree. B-tree is a fat tree. Height of B-

Trees is kept low by putting maximum possible 

keys in a B-Tree node. Generally, the B-Tree node 

size is kept equal to the disk block size. Since it is 

low for B-Tree, total disk accesses for most of the 

operations are reduced significantly compared to 

balanced Binary Search Trees like AVL Tree [7], 

Red-Black Tree [8], etc. 

 

II. RELATED WORK 
The binary search tree is a well-known 

data structure. When the data volume is so large 

that the tree does not fit in main memory, a disk-

based search tree is necessary. The most commonly 

used disk-based search trees are the B-tree and its 

variations. Originally invented by Bayer and 

McCreight [9], the B-tree may be regarded as an 

extension of the balanced binary tree, since a B-tree 

is always balanced (i.e., all leaf nodes are on the 

same level). It is the goal of all algorithms to 

consume as less time as possible in the computer 

and manage a tradeoff of time and space. B+ trees 

are used in a number of ways to manage this 

tradeoff by utilizing required space [10]. Efficient 

construction of indexes is very important in bulk-

loading a database or adding a new index to an 

existing database since both of them should handle 

an enormous volume of data. Proposed algorithm 

for batch-constructing the B+-tree, the most widely 

used index structure in database systems. B+ Tree, 

a widely-used storage structure in database 

management systems, and propose its utilization 

for supporting the logging in databases [12]. 

Developing B+ trees with good performance on 

NVM, using Optane DCs, to study and analyze the 

influence factors of designing B+ trees on NVM. 
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III. METHODOLOGY 
3.1 B+ Tree 

Most file systems employ search-trees to 

index the stored data, and the B+ tree is a special 

search-tree with the following features: – It stores 

records: r = (k, d); k = key, d = data. The key is 

unique. – Data is stored only in leaves, inner-nodes 

are only index-nodes. – In an index-node there are 

x keys, and also x + 1 pointers, each pointing to the 

corresponding subtree. – The B+ tree has one main 

parameter, namely its order. If the order of a B+ is 

d, then for each index node there is a minimum of d 

keys, and a maximum of 2d keys, so there are a 

minimum of d + 1 pointers, and maximum of 2d + 

1 pointers in the node. From the above, if a B+ tree 

stores n nodes, its height must not be greater than 

logd (n) + 1. The total cost of insertion and deletion 

is O (logd (n)) [13]. This data structure is used by 

some database systems like PostgreSQL and 

MySQL, and file systems like ReiserFS, XFS, JF2 

and NTFS. 

The leaves (the bottom-most index blocks) 

of the B+ tree are often linked to one another in a 

linked list; this makes range queries or an (ordered) 

iteration through the blocks simpler and more 

efficient (though the aforementioned upper bound 

can be achieved even without this addition). This 

does not substantially increase space consumption 

or maintenance on the tree. This illustrates one of 

the significant advantages of a B+ tree over a B-

tree; in a B-tree, since not all keys are present in the 

leaves, such an ordered linked list cannot be 

constructed. A B+ tree is thus particularly useful as 

a database system index, where the data typically 

resides on disk, as it allows the B+ tree to actually 

provide an efficient structure for housing the data 

itself. 

If a storage system has a block size of B 

bytes, and the keys to be stored have a size of k, 

arguably the most efficient B+ tree is one where. 

Although theoretically, the one-off is unnecessary, 

in practice there is often a little extra space taken 

up by the index blocks (for example, the linked list 

references in the leaf blocks). Having an index 

block which is slightly larger than the storage 

system's actual block represents a significant 

performance decrease; therefore erring on the side 

of caution is preferable. If nodes of the B+ tree are 

organized as arrays of elements, then it may take a 

considerable time to insert or delete an element as 

half of the array will need to be shifted on average. 

To overcome this problem, elements inside a node 

can be organized in a binary tree or a B+ tree 

instead of an array. B+ trees can also be used for 

data stored in RAM. In this case, a reasonable 

choice for block size would be the size of the 

processor's cache line. 

 

3.2 Implementation Blocks 

3.2.1 Insertion 

1) Initialize x as root. 

2) While x is not a leaf, do the following 

a) Find the child of x that is going to be traversed 

next. Let the child be y. 

b) If y is not full, change x to point toy. 

c) If y is full, split it and change x to point to one of 

the two parts of y. If k is smaller than mid key in y, 

then set x as the first part of y. The else second part 

of y. When we split y, we move a key from y to its 

parent x. 

3) The loop in step 2 stops when x is a leaf. x must 

have space for 1 extra key as we have been splitting 

all nodes in advance. So simply insert k to x. 

 

3.2.2 Searching 

1) Initialize x as root. 

2) While x is not a leaf, do the following: 

a.) find the key value which equal to value to 

search, if found return the index. 

b.) otherwise go to the node which may contain 

value to be searched i.e. if the value to be searched 

is valid, then go to the node which has key values 

x< val <y. 

c.) Recursively call the node. 

3) The recursion in step 2 stops when x is leaf and 

we have not found value to be searched. In that 

case, we return the key not found. 

3.2.3 Code Structure 

· 2 classes are made for the BTree 

implementation: One is the client which is 

used to run all the functions of class BTree. 

· 4 data members are taken for class BTree 

which are M(for the degree of the BTree), a 

private class Node which stores array of Entry 

references which is another private class in 

BTree , n for the number of key-value 

pairs(key-value pair is counted as one data 

value), height for the height of BTree. 

· Private class Entry has 3 data members: key, 

value, and reference of type Node. 

· BTree constructor is used to initialize an empty 

BTree. 

 

IV. RESULT AND ANALYSIS 
We reduced the time taken to search a 

given record by using a B/B+ tree rather than 

indexing and traditional sequential access. It is 

concluded that disk-access times are much slower 

than main memory access times. Typical seek 

times and rotational delays are of the order of 5 to 6 

milliseconds and typical data transfer rates are of 
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the range of 5 to 10 million bytes per second and 

therefore, main memory access times are likely to 

be at least 4 or 5 orders of magnitude faster than 

disk access on any given system. If a storage 

system has a block size of B bytes, and the keys to 

be stored have a size of k, arguably the most 

efficient B+ tree is one where. Although 

theoretically, the one-off is unnecessary, in practice 

there is often a little extra space taken up by the 

index blocks (for example, the linked list 

references in the leaf blocks). Having an index 

block which is slightly larger than the storage 

system's actual block represents a significant 

performance decrease; therefore erring on the side 

of caution is preferable. If nodes of the B+ tree are 

organized as arrays of elements, then it may take a 

considerable time to insert or delete an element as 

half of the array will need to be shifted on average. 

To overcome this problem, elements inside a node 

can be organized in a binary tree or a B+ tree 

instead of an array. B+ trees can also be used for 

data stored in RAM. In this case, a reasonable 

choice for block size would be the size of the 

processor's cache line. The space efficiency of B+ 

trees can be improved by using some compression 

techniques. One possibility is to use delta encoding 

to compress keys stored into each block. For 

internal blocks, space saving can be achieved by 

either compressing keys or pointers.  

 

 

 
 

V. CONCLUSION 
It is concluded that disk-access times are 

much slower than main memory access times. 

Typical seek times and rotational delays [14] are of 

the order of 5 to 6 milliseconds and typical data 

transfer rates are of the range of 5 to 10 million 

bytes per second and therefore, main memory 

access times are likely to be at least 4 or 5 orders of 

magnitude faster than disk access on any given 

system. Therefore, the objective is to minimize the 

number of disk accesses and thus, this project is 

concerned with techniques for achieving that 

objective i.e. techniques for arranging the data on a 
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disk so that any required piece of data, say some 

specific record, can be located in a few I/O’s as 

possible. 

1. From the above observations, it is very clear that 

B+ tree is better than normal indexing in every 

possible way. 

2. Hence it is always desirable to implement B+ 

tree data structure to search data in an efficient 

manner. 

3. Multilevel Indexing and is better for larger data 

whereas sparse indexing does well with smaller 

data. 
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